N(1)—C(1)	1.476 (4)	C(8)—C(9)	1.518 (5)
N(1)—C(4)	1.333 (5)	C(8)—C(10)	1.528 (5)
N(2)-C(8) C(4)-O(2)-C(5)	1.483 (5) 116.6 (3)	O(2)—C(4)—N(1)	109.9 (3)
C(11) - O(4) - C(12)	117.2 (3)	C(1) - C(6) - C(7)	114.9 (3)
C(1) - N(1) - C(4)	124.1 (3)	C(6) - C(7) - C(8)	115.1 (3)
C(8) - N(2) - C(11)	124.3 (3)	N(2) - C(8) - C(7)	111.4 (3)
N(1)-C(1)-C(2)	106.3 (3)	N(2)— $C(8)$ — $C(9)$	106.1 (3)
N(1)-C(1)-C(3)	109.7 (3)	N(2)— $C(8)$ — $C(10)$	109.1 (3)
N(1)-C(1)-C(6)	111.7 (3)	C(7)— $C(8)$ — $C(9)$	111.0 (3)
C(2)-C(1)-C(3)	108.9 (3)	C(7)— $C(8)$ — $C(10)$	109.5 (3)
C(2)-C(1)-C(6)	110.6 (4)	C(9)— $C(8)$ — $C(10)$	109.6 (4)
C(3) - C(1) - C(6) O(1) - C(4) - O(2)	109.6 (3) 122.7 (3)	O(3) - C(11) - O(4) O(3) - C(11) - N(2) O(4) - O(4)	123.0 (3) 127.8 (3)
O(1) - C(4) - N(1) C(5) - O(2) - C(4) - O(1) C(5) - O(2) - C(4) - O(1)	-0.2(5)	O(4) - C(11) - N(2) C(4) - N(1) - C(1) - C(2) S(4) - N(1) - C(1) - C(2)	109.4(3) -174.6(3)
C(12) - O(2) - C(4) - N(1) C(12) - O(4) - C(11) - O(12) - O(4) - C(11) - N(12)	-178.2(3) 3) $-2.9(5)$ 2) 177.8(3)	C(4) - N(1) - C(1) - C(3) C(4) - N(1) - C(1) - C(6)	-53.8 (4)

Table 3. Hydrogen-bonding geometry (Å, °)

D — $\mathbf{H} \cdots \mathbf{A}$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdots A$	D — $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	
$N(1) - H(N1) \cdot \cdot \cdot O(3^{i})$	0.86(1)	2.171 (5)	3.027 (5)	172.6 (4)	
$N(2)$ — $H(N2) \cdot \cdot \cdot O(1^{ii})$	0.85 (1)	2.198 (5)	3.082 (5)	175.1 (4)	
Symmetry codes: (i) $1 - x, -y, 1 - z$; (ii) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$.					

Data were corrected for Lorentz and polarization effects but not for absorption. The structure was solved by direct methods (MULTAN11/82; Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) and refined by full-matrix least squares with weighting scheme using the SDP programs (Enraf–Nonius, 1985) on a MicroVAX computer. Anisotropic displacement parameters were used for all the non-H atoms. At an intermediate stage of refinement, difference Fourier maps showed maxima in positions consistent with the locations of all H atoms. The HN atoms were included in the least-squares refinement while all other H atoms were placed in their idealized positions (C—H 0.96 Å) and included as riding atoms in the structure-factor calculations, but were not refined.

The author thanks the University of Hong Kong for support of this work.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry, least-squares-planes data and torsion angles have been deposited with the IUCr (Reference: HL1050). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bracher, B. H. & Small, R. W. H. (1967). Acta Cryst. 23, 410-418.
- Che, C.-M., Yip, H.-K., Wong, W.-T. & Lai, T.-F. (1992). Inorg. Chim. Acta, 197, 177-183.
- Enraf-Nonius (1985). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Sepehrnia, B., Ruble, J. R. & Jeffrey, G. A. (1987). Acta Cryst. C43, 249-251.

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 1798–1801

Two Octahydroacridines

ROLAND FRÖHLICH, MATTHIAS GREHL,

SIGRID KRAMM-GLADE AND SABINE LASCHAT

Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany

(Received 13 December 1993; accepted 21 April 1994)

Abstract

A *cis*-decalin conformation with congestion at the central heterocyclic ring is found for *cis*-5,9,9-trimethyl-octahydroacridine, $C_{16}H_{23}N$, and a slightly twisted *trans*-decalin conformation is found for (3*RS*,-4*aRS*,9*aSR*)-3,5,9,9-tetramethyloctahydroacridine, C_{17} -H₂₅N.

Comment

We recently reported the convenient preparation of substituted octahydroacridine derivatives by intramolecular Lewis acid-catalyzed hetero-Diels-Alder reaction of N-arylimines, which are tethered to an alkene moiety (Laschat & Lauterwein, 1993). The cis/trans ratio was found to be mainly dependent on the substituents at C(3) of the octahydroacridine system. Determination of the stereochemistry of the ring fusion by NMR experiments led to the conclusion that the *cis* isomer prefers a *cis*-decalin conformation, whereas the trans-decalin conformation is favoured by the trans isomer. This assumption is now confirmed by an X-ray crystallographic analysis of cis-5,9,9trimethyloctahydroacridine, (1) (Fig. 1), and (3RS,-4aRS,9aSR)-3,5,9,9-tetramethyloctahydroacridine, (2)(Fig. 2). In addition, the relative cis configuration between H(3) and H(4a) in (2) can be established from the X-ray data.

Comparison of the important structural features of (1) and (2) with those of tricarbonyl(*trans*-3,3,5,9,9-pentamethyloctahydroacridine)chromium (Laschat, Noe, Riedel & Krüger, 1993) shows the following differences. The aromatic bond lengths of (1) and (2) are very

similar, except for C(8a)—C(10a) and C(5)—C(10a), which are 0.02–0.03 Å longer than the other aromatic bonds. However, all aromatic bonds of (1) and (2) are 0.02-0.03 Å shorter than the corresponding bonds of the *trans* chromium complex, which is probably the result of an increased bond order resulting from the absence of the electron-withdrawing Cr(CO)₃ fragment.

Fig. 1. SCHAKAL (Keller, 1992) plot of (1) with atomic numbering scheme.

Fig. 2. SCHAKAL (Keller, 1992) plot of (2) with atomic numbering scheme.

Experimental

Compound (1)

Crystal data

 $C_{16}H_{23}N$ $M_r = 229.35$ Monoclinic $P2_1/n$ a = 10.058 (1) Å b = 10.154 (1) Å c = 13.296 (1) Å $\beta = 94.80 (1)^{\circ}$ $V = 1353.1 (2) Å^{3}$ Z = 4 $D_x = 1.126 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: none 2397 measured reflections 2294 independent reflections 1845 observed reflections $[I > 2\sigma(I)]$

Refinement

Refinement on F^2 R(F) = 0.061 $wR(F^2) = 0.196$ S = 1.1752290 reflections 161 parameters H-atom parameters calculated, except for H(N) (refined from difference Fourier maps) $w = 1/[\sigma^2(F_o)^2 + (0.127P)^2 + 0.2421P]$ where $P = (F_o^2 + 2F_c^2)/3$

Compound (2)

Crystal data $C_{17}H_{25}N$ $M_r = 243.38$ Monoclinic $P2_1/n$ a = 9.016 (1) Å b = 18.475 (2) Å c = 9.295 (1) Å $\beta = 106.85 (1)^\circ$ $V = 1481.8 (3) Å^3$ Z = 4 $D_x = 1.091 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 9.84-18.26^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$ T = 293 KIrregular $0.6 \times 0.6 \times 0.6 \text{ mm}$ Colourless

 $R_{int} = 0.016$ $\theta_{max} = 24.8^{\circ}$ $h = -11 \rightarrow 11$ $k = 0 \rightarrow 11$ $l = -15 \rightarrow 0$ 3 standard reflections frequency: 120 min intensity variation: none

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C)

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 25 reflections $\theta = 22.37-42.10^{\circ}$ $\mu = 0.46$ mm⁻¹ T = 293 K Irregular $1.4 \times 0.4 \times 0.1$ mm Colourless

 $R_{\rm int} = 0.047$ $\theta_{\rm max} = 70.2^{\circ}$

C₁₆H₂₃N AND C₁₇H₂₅N

ω -2 θ scans	$h = -10 \rightarrow 10$	Table 3. Selecte	d geometri	c parameters (Å, °) for (1)
Absorption correction:	$k = -21 \rightarrow 12$	$N \rightarrow C(10a)$	1.377 (3)	$N \rightarrow C(4a)$	1.470 (3)
none	$l = -10 \rightarrow 12$	C(1) - C(9a)	1.522 (3)	C(1) - C(2)	1.538 (5)
2760 measured reflections	3 standard reflections	C(2) - C(3)	1.481 (5)	C(3) - C(11)	1.493 (5)
2545 independent reflections	frequency: 120 min	C(3)—C(4)	1.533 (4)	C(4)—C(4a)	1.511 (4)
1001 abaamiad methodiana	interneity, 120 mm	C(4a)-C(9a)	1.497 (4)	C(5)—C(6)	1.374 (4)
1991 observed reflections	intensity variation: none	C(5)—C(10a)	1.415 (3)	C(5)—C(14)	1.494 (4)
$[I > 2\sigma(I)]$		C(6)—C(7)	1.373 (4)	C(7)—C(8)	1.380 (5)
		C(8)—C(8a)	1.389 (4)	C(8a)—C(10a)	1.396 (3)
Refinement		C(8a)—C(9)	1.537 (3)	C(9)—C(13)	1.531 (4)
Definition F^2	(A -) < 0.001	C(9)—C(12)	1.543 (3)	C(9)—C(9a)	1.567 (4)
Refinement on F	$(\Delta/\sigma)_{\rm max} < 0.001$	C(10a)NC(4a)	119.8 (2)	C(9a) - C(1) - C(2)	111.6 (2)
R(F) = 0.072	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm A}^{-3}$	C(3) - C(2) - C(1)	113.0 (3)	C(2) - C(3) - C(11)	113.2 (3)
$wR(F^2) = 0.209$	$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$	C(2)—C(3)—C(4)	109.7 (3)	C(11) - C(3) - C(4)	111.3 (3)
S = 1.035	Extinction correction: none	C(4a) - C(4) - C(3)	112.8 (2)	N-C(4a)-C(9a)	109.3 (2)
2545 reflections	Atomic scattering factors	N-C(4a)-C(4)	108.1 (2)	C(9a)—C(4a)—C(4)	112.2 (2)
230 parameters	from International Tables	C(6)—C(5)—C(10a)	119.0 (2)	C(6)—C(5)—C(14)	121.1 (2)
		C(10a)—C(5)—C(14)	119.9 (2)	C(7) - C(6) - C(5)	121.7 (3)
H-atom parameters renned,	for Crystallography (1992,	C(6) - C(7) - C(8)	118.5 (3)	C(7) - C(8) - C(8a)	122.8 (3)
positions from difference	Vol. C)	C(8) - C(8a) - C(10a)	117.5 (2)	C(8) - C(8a) - C(9)	120.5 (2)
Fourier map		C(10a) - C(8a) - C(9)	122.0 (2)	C(13) - C(9) - C(8a)	109.1 (2)
$w = 1/[\sigma^2(F_2^2) + (0.1312P)^2$		C(13) - C(9) - C(12)	108.8 (2)	C(8a) - C(9) - C(12)	107.8 (2)
+ 0.4555P		C(13) - C(9) - C(9a)	107.4 (2)	C(8a) - C(9) - C(9a)	110.4 (2)
+ 0.43531		C(12) - C(9) - C(9a)	113.2 (3)	C(4a) - C(9a) - C(1)	110.0 (2)
where $P = (F_o^2 + 2F_c^2)/3$		C(4a) - C(9a) - C(9)	112.8 (2)	C(1) - C(9a) - C(9)	113.9 (2)
		$N \rightarrow C(10a) \rightarrow C(8a)$	121.0 (2)	$N \rightarrow C(10a) \rightarrow C(5)$	118.7 (2)
Table 1 Fractional atomic	coordinates and equivalent	C(0a) - C(10a) - C(5)	120.4 (2)		

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	z	$U_{\rm eq}$
N	0.3330 (2)	0.4912 (2)	0.3150(1)	0.046(1)
C(1)	0.1373 (2)	0.6904 (2)	0.3826(2)	0.047 (1)
C(2)	0.1941 (3)	0.7092 (3)	0.4909 (2)	0.060(1)
C(3)	0.3182 (3)	0.6253 (3)	0.5150(2)	0.063 (1)
C(4)	0.2892 (2)	0.4823 (2)	0.4914 (2)	0.052 (1)
C(4a)	0.2323 (2)	0.4609 (2)	0.3836 (2)	0.041 (1)
C(5)	0.4101 (2)	0.5566 (2)	0.1561 (2)	0.041 (1)
C(6)	0.3810(2)	0.6000 (2)	0.0586 (2)	0.047 (1)
C(7)	0.2516 (2)	0.6197 (2)	0.0190 (2)	0.051 (1)
C(8)	0.1484 (2)	0.5968 (2)	0.0791 (2)	0.045 (1)
C(8a)	0.1713 (2)	0.5537 (2)	0.1777 (2)	0.038 (1)
C(9)	0.0580 (2)	0.5243 (2)	0.2443 (2)	0.042 (1)
C(9a)	0.1091 (2)	0.5461 (2)	0.3555 (2)	0.040 (1)
C(10a)	0.3045 (2)	0.5322 (2)	0.2164 (1)	0.036 (1)
C(11)	-0.0639 (2)	0.6121 (3)	0.2169 (2)	0.062(1)
C(12)	0.0140 (2)	0.3807 (2)	0.2266 (2)	0.059 (1)
C(13)	0.5517 (2)	0.5376(2)	0.1983 (2)	0.053 (1)

Table 2. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å²) for (2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	х	у	Ζ	U_{eq}
N	0.1021 (2)	0.5377 (1)	0.3194 (2)	0.061 (1)
C(1)	0.0319 (4)	0.3366(1)	0.2889 (4)	0.080(1)
C(2)	0.1839 (5)	0.3142 (2)	0.4057 (5)	0.098 (1)
C(3)	0.3181 (4)	0.3586 (2)	0.3978 (4)	0.093 (1)
C(4)	0.2808 (3)	0.4391 (1)	0.4077 (3)	0.074 (1)
C(4a)	0.1320 (3)	0.4614(1)	0.2926 (3)	0.072 (1)
C(5)	-0.0516 (3)	0.6445 (1)	0.2394 (3)	0.064 (1)
C(6)	-0.1914 (4)	0.6753 (2)	0.1643 (3)	0.083 (1)
C(7)	-0.3201 (4)	0.6339 (2)	0.1000 (4)	0.103 (1)
C(8)	-0.3068 (4)	0.5596 (2)	0.1112 (4)	0.095(1)
C(8a)	-0.1686 (3)	0.5249(1)	0.1833 (2)	0.065(1)
C(9)	-0.1600 (3)	0.4418 (1)	0.1891 (2)	0.066 (1)
C(9a)	-0.0032 (3)	0.4165 (1)	0.3017 (3)	0.070(1)
C(10a)	-0.0390 (3)	0.5681(1)	0.2462 (2)	0.057(1)
C(11)	0.4651 (5)	0.3383 (2)	0.5136 (5)	0.112(1)
C(12)	-0.1838 (6)	0.4140 (2)	0.0274 (3)	0.097 (1)
C(13)	-0.2910 (4)	0.4127 (2)	0.2472 (4)	0.083 (1)
C(14)	0.0859 (4)	0.6903 (1)	0.3138 (4)	0.080(1)

Table 4. Selected	geometric	parameters (Å.	°)	for	(2)
	geomenie	purumeners	л,	- 13	101 1	()

		-	
N-C(10a)	1.383 (3)	NC(4a)	1.452 (3)
C(1)—C(2)	1.515 (3)	C(1)—C(9a)	1.530 (3)
C(2)—C(3)	1.522 (4)	C(3)—C(4)	1.509 (4)
C(4)—C(4a)	1.514 (3)	C(4a)-C(9a)	1.531 (3)
C(5)—C(6)	1.377 (3)	C(5)—C(10a)	1.406 (3)
C(5)—C(13)	1.499 (3)	C(6)—C(7)	1.378 (3)
C(7)—C(8)	1.381 (3)	C(8)—C(8a)	1.384 (3)
C(8a)—C(10a)	1.411 (3)	C(8a)-C(9)	1.529 (3)
C(9)—C(11)	1.535 (3)	C(9)—C(12)	1.537 (3)
C(9)—C(9a)	1.540 (3)		
C(10a)NC(4a)	124.0 (2)	C(2)-C(1)-C(9a)	113.1 (2)
C(1)—C(2)—C(3)	111.5 (2)	C(4)—C(3)—C(2)	110.7 (2)
C(3)—C(4)—C(4a)	112.7 (2)	N-C(4a)-C(4)	109.6 (2)
N-C(4a)-C(9a)	108.6 (2)	C(4)-C(4a)-C(9a)	112.6 (2)
C(6)—C(5)—C(10a)	118.9 (2)	C(6)—C(5)—C(13)	121.0 (2)
C(10a)-C(5)-C(13)	120.2 (2)	C(5)—C(6)—C(7)	121.7 (2)
C(6)—C(7)—C(8)	119.1 (2)	C(7)—C(8)—C(8a)	121.9 (2)
C(8)-C(8a)-C(10a)	118.1 (2)	C(8)-C(8a)-C(9)	122.5 (2)
C(10a)-C(8a)-C(9)	119.3 (2)	C(8a)—C(9)—C(11)	111.6 (2)
C(8a)-C(9)-C(12)	108.4 (2)	C(11)—C(9)—C(12)	107.5 (2)
C(8a)-C(9)-C(9a)	108.8 (2)	C(11) - C(9) - C(9a)	109.9 (2)
C(12)-C(9)-C(9a)	110.6 (2)	C(1)-C(9a)-C(4a)	110.7 (2)
C(1)-C(9a)-C(9)	113.8 (2)	C(4a)-C(9a)-C(9)	110.6 (2)
N-C(10a)-C(5)	119.2 (2)	N-C(10a)-C(8a)	120.5 (2)
C(5)—C(10a)—C(8a)	120.3 (2)		

The positions of the H atoms of (1) could be found from difference Fourier maps. Refinement resulted in slightly deformed arrangements. Thus, for final refinement, H atoms were set at calculated positions. All calculations were performed on a PC486 with *SHELXS*86 (Sheldrick, 1985) and *SHELXL*93 (Sheldrick, 1993). Molecular graphics were obtained with *SCHAKAL*92 (Keller, 1992).

Generous financial support by the Alfried von Bohlen und Halbach-Stiftung is gratefully acknowledged. SL thanks the Wissenschaftsministerium Nordrhein-Westfalen for a Lise-Meitner fellowship. Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry for (2) have been deposited with the IUCr (Reference: KA1074). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Keller, E. (1992). SCHAKAL92. Fortran Program for the Graphic Representation of Molecular and Crystallographic Models. Univ. of Freiburg, Germany.

Laschat, S. & Lauterwein, J. (1993). J. Org. Chem. 58, 2856-2861.

- Laschat, S., Noe, R., Riedel, M. & Krüger, C. (1993). Organometallics, 12, 3738-3742.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.

Comment

Ebselen (Natterman/RP, 1981), (I), is an organoselenium compound which exhibits anti-inflammatory activity and has the ability to catalyze the reduction of hydroxyperoxidases by glutathion (Parnham & Graf, 1987). The crystal structure of ebselen has been determined previously (Dupont, Dideberg & Jacquemin, 1990). Some modifications of its molecular structure have been attempted in order to increase the solubility of the compound without modifying the pharmacological properties (Jacquemin, Christiaens, Renson, Evers & Dereu, 1992). In particular, a tetrahedral C has been introduced into the heterocycle to form the title compound (II), the crystal structure of which is described here. Fig. 1 shows the molecular structure, with the atomic numbering.

The transformation from the five-membered ring of ebselen to a six-membered heterocycle increases the N1—Se1—O1 angle by about 10°. The Se1—N1 and N1—C10 distances are shortened by about 0.04 Å. The substitution of the phenyl by a methyl group modifies the electronic delocalization around the N atom and this probably contributes to the deviations of the Se—N—(C==O) bond distances from those in ebselen. The benzene ring is planar to

Fig. 1. View of the molecule with atom-labelling scheme.

2,4,4-Trimethyl-2*H*-1,2-benzo-

selenazin-3(4H)-one

Acta Cryst. (1994). C50, 1801-1802

L. DUPONT

Laboratoire de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium

P. JACQUEMIN

Laboratoire de Chimie Organique, Institut de Chemie B6, Université de Liège au Sart Tilman, B-4000 Liège, Belgium

(Received 15 October 1993; accepted 8 February 1994)

Abstract

The title compound, $C_{11}H_{13}NOSe$, is a derivative of ebselen, an organoselenium compound which exhibits anti-inflammatory activity. The aim of the modification of the ebselen molecular structure is to increase the solubility of the compound without modifying the pharmacological properties. The Se—N bond [1.859 (5) Å] is included in a sixmembered ring, which has a boat conformation. The value of the C—Se—N angle is 95.2 (2)°. The cohesion of the crystal is the result of van der Waals interactions.